Reciprocal and Heterogeneous Link Prediction in Social Networks

نویسندگان

  • Xiongcai Cai
  • Michael Bain
  • Alfred Krzywicki
  • Wayne Wobcke
  • Yang Sok Kim
  • Paul Compton
  • Ashesh Mahidadia
چکیده

Link prediction is a key technique in many applications in social networks, where potential links between entities need to be predicted. Conventional link prediction techniques deal with either homogeneous entities, e.g., people to people, item to item links, or non-reciprocal relationships, e.g., people to item links. However, a challenging problem in link prediction is that of heterogeneous and reciprocal link prediction, such as accurate prediction of matches on an online dating site, jobs or workers on employment websites, where the links are reciprocally determined by both entities that heterogeneously belong to disjoint groups. The nature and causes of interactions in these domains makes heterogeneous and reciprocal link prediction significantly different from the conventional version of the problem. In this work, we address these issues by proposing a novel learnable framework called ReHeLP, which learns heterogeneous and reciprocal knowledge from collaborative information and demonstrate its impact on link prediction. Evaluation on a large commercial online dating dataset shows the success of the proposed method and its promise for link prediction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Link Prediction Method Based on Learning Automata in Social Networks

Nowadays, online social networks are considered as one of the most important emerging phenomena of human societies. In these networks, prediction of link by relying on the knowledge existing of the interaction between network actors provides an estimation of the probability of creation of a new relationship in future. A wide range of applications can be found for link prediction such as electro...

متن کامل

Link Prediction across Heterogeneous Social Networks: A Survey

Online social networks have gained great success in recent years. Some online social networks only involving users and social links among users can be represented as homogeneous networks. Meanwhile, some other social networks containing abundant information, which include multiple kinds of nodes and complex relationships, can be denoted as heterogeneous networks. Predicting the missing links or...

متن کامل

Providing a Link Prediction Model based on Structural and Homophily Similarity in Social Networks

In recent years, with the growing number of online social networks, these networks have become one of the best markets for advertising and commerce, so studying these networks is very important. Most online social networks are growing and changing with new communications (new edges). Forecasting new edges in online social networks can give us a better understanding of the growth of these networ...

متن کامل

پیشگویی پیوند در شبکه های اجتماعی با استفاده از ترکیب دسته بندی کننده ها

Abstract Link prediction in social networks is one of the most important activities in analysis of such networks. The importance of link prediction in social networks is due to its dynamic nature. While members and their relationships (links) in such networks are continuously increasing, links may be missed due to various reasons. By predicting such links, the possibility of extension, compl...

متن کامل

An evolutionary algorithm approach to link prediction in dynamic social networks

Many real world, complex phenomena have underlying structures of evolving networks where nodes and links are added and removed over time. A central scientific challenge is the description and explanation of network dynamics, with a key test being the prediction of short and long term changes. For the problem of short-term link prediction, existing methods attempt to determine neighborhood metri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012